P.T.V.A.'s M.L.Dahanukar College of Commerce (Autonomous) Teaching Plan: 2024 – 2025 Department: Information Technology

Class: M.Sc (Part I) – Sem-II Subject: BIG DATA ANALYTICS Name of the Faculty: Supritha Bhandary

Month	Topics to be Covered	Interna I Assess ment	Number of Lectures
DEC	Introduction to Big Data, Characteristics of Data, and Big Data Evolution of Big Data, Definition of Big Data, Challenges with big data, Why Big data? Data Warehouse environment, Traditional Business Intelligence versus Big Data. Examples of big Data Analytics. Big Data Analytics, Classification of Analytics, Challenges of Big Data, Importance of Big Data, Big Data Technologies, Data Science, Responsibilities, Soft state eventual consistency. Data Analytics Life Cycle Analytical Theory and Methods: Clustering and Associated Algorithms, Association Rules		12
JAN	Apriori Algorithm, Candidate Rules, Applications of Association Rules, Validation and Testing, Diagnostics, Regression, Linear Regression, Logistic Regression, Additional Regression Models Analytical Theory and Methods: Classification, Decision Trees, Naïve Bayes, Diagnostics of Classifiers, Additional Classification Methods, Categorizing Documents by Topics, Determining Sentiments		18
FEB	Data Product, Building Data Products at Scale with Hadoop, Data Science Pipeline, Hadoop Ecosystem, Operating System for Big Data, Concepts, Hadoop Architecture Distributed Analysis and Patterns, Computing with Keys,		14
MAR	Design Patterns, Last-Mile Analytics, Data Mining and Warehousing, Structured Data Queries with Hive, HBase, Data Ingestion, Importing Relational data with Sqoop, Injesting stream data with flume. Analytics with higher level APIs, Pig, Spark's higher level APIs		16

Sign of Faculty

M.L. Dahanukar College of Commerce (Autonomous)

Teaching Plan: 2024 - 25

Department: I.T. Class: M.Sc.(I.T.) Semester: II

Subject: Modern Networking

Name of the Faculty: Prof. Gufran Qureshi

Month	Topics to be Covered	Internal Assessment	Number of Lectures
Dec	Unit I		16
	Modern Networking		
	Elements of Modern Networking		
	The Networking Ecosystem, Example Network Architectures, Global		
	Network Architecture, A Typical Network Hierarchy Ethernet		
	Applications of Ethernet Standards Ethernet Data Rates Wi-Fi		
	Applications of Wi-Fi, Standards Wi-Fi Data Rates 4G/5G Cellular First		
	Generation Second Generation, Third Generation Fourth Generation		
	Fifth Generation, Cloud Computing Cloud Computing Concepts The		
	Benefits of Cloud Computing Cloud Networking Cloud Storage, Internet		
	of Things Things on the Internet of Things, Evolution Layers of the		
	Internet of Things, Network Convergence Unified Communications,		
	Requirements and Technology Types of Network and Internet		
	Traffic, Elastic Traffic, Inelastic Traffic, Real-Time Traffic Characteristics		
	Demand: Big Data, Cloud Computing, and Mobile TrafficBig Data Cloud		
	Computing, Mobile Traffic, Requirements: QoS and QoE, Quality of		
	Service, Quality of Experience, Routing Characteristics, Packet		
	Forwarding, Congestion Control ,Effects of Congestion, Congestion		
	Control Techniques, SDN and NFV Software-Defined Networking,		
	Network Functions Virtualization Modern Networking Elements		
	Unit II		
	Software-Defined Networks		
	SDN: Background and Motivation, Evolving Network Requirements		
	Demand Is Increasing, Supply Is Increasing Traffic Patterns Are More		
	ComplexTraditional Network Architectures are Inadequate,		
Jan	The SDN Approach Requirements SDN Architecture Characteristics of		16
	Software-Defined Networking, SDN- and NFV-Related Standards		
	Standards-Developing Organizations Industry Consortia Open		
	Development Initiatives, SDN Data Plane and OpenFlow SDN Data Plane,		
	Data Plane Functions Data Plane Protocols OpenFlow Logical Network		
	Device Flow Table Structure Flow Table Pipeline, The Use of Multiple		
	Tables Group Table OpenFlow Protocol, SDN Control Plane SDN Control		
	Plane Architecture Control Plane Functions, Southbound Interface		
	Northbound InterfaceRouting, ITU-T Model, OpenDaylight OpenDaylight		
	Architecture OpenDaylight Helium, REST REST Constraints Example REST		
	API, Cooperation and Coordination Among Controllers, Centralized		

	Versus Distributed Controllers, High-Availability Clusters Federated SDN	
	Networks, Border Gateway Protocol Routing and QoS Between	
	Domains, Using BGP for QoS Management IETF SDNi OpenDaylight SNDi	
	SDN Application Plane SDN Application Plane Architecture Northbound	
	Interface Network Services Abstraction Layer Network Applications,	
	User Interface, Network Services Abstraction Layer Abstractions in SDN,	
	Frenetic Traffic Engineering PolicyCop Measurement and Monitoring	
	Security OpenDaylight DDoS Application Data Center Networking, Big	
	Data over SDN Cloud Networking over SDN Mobility and Wireless	
	Information-Centric Networking CCNx, Use of an Abstraction Layer	
	Unit III	
	Virtualization, Network Functions Virtualization: Concepts and	
	Architecture, Background and Motivation for NFV, Virtual Machines The	
	Virtual Machine Monitor, Architectural Approaches Container	
	Virtualization, NFV Concepts Simple	
	Example of the Use of NFV, NFV Principles High-Level NFV Framework, NFV Benefits and Requirements NFV Benefits, NFV Requirements, NFV	
	Reference Architecture NFV Management and Orchestration, Reference	
	Points Implementation, NFV Functionality, NFV Infrastructure, Container	
	Interface, Deployment of NFVI Containers, Logical Structure of NFVI	
	Domains,Compute Domain, Hypervisor Domain,Infrastructure Network	
Fab	Domain,	10
Feb	Virtualized Network Functions, VNF Interfaces, VNFC to VNFC	16
	Communication, VNF Scaling, NFV Management and Orchestration,	
	Virtualized Infrastructure Manager, Virtual Network Function	
	Manager, NFV Orchestrator, Repositories, Element Management,	
	OSS/BSS, NFV Use Cases Architectural Use Cases, Service-Oriented Use	
	Cases, SDN and NFV Network Virtualization, Virtual LANs ,The Use of Virtual LANs,Defining VLANs, Communicating VLAN	
	Membership, IEEE 802.1Q VLAN Standard, Nested VLANs, OpenFlow	
	VLAN Support, Virtual Private Networks, IPsec VPNs, MPLS VPNs,	
	Network Virtualization, Simplified Example, Network Virtualization	
	Architecture, Benefits of Network Virtualization, OpenDaylight's Virtual Tenant Network, Software-Defined Infrastructure,Software-Defined	
	Storage, SDI Architecture Unit IV	
	Defining and Supporting User Needs, Quality of Service, Background,	
	QoS Architectural Framework, Data Plane, Control Plane, Management	
	Plane, Integrated Services Architecture, ISA Approach ISA Components,	
	ISA Services, Queuing Discipline, Differentiated Services, Services, DiffServ Field, DiffServ Configuration and Operation, Ber-Hon Behavior	
	DiffServ Field, DiffServ Configuration and Operation, Per-Hop Behavior, Default Forwarding PHB, Service Level Agreements, IP Performance	
	Metrics, OpenFlow QoS Support, Queue Structures, Meters, QoE: User	
	Quality of Experience, Why QoE?, Online Video Content Delivery, Service	
	Failures Due to Inadequate QoE Considerations QoE-Related	
	Standardization Projects, Definition of Quality of Experience, Definition	
	of Quality, Definition of Experience Quality Formation Process,	
	Definition of Quality of Experience, QoE Strategies in Practice, The	
	QoE/QoS Layered Model Summarizing and Merging the ,QoE/QoS	

	Layers, Factors Influencing QoE, Measurements of QoE, Subjective	
	Assessment, Objective Assessment, End-User Device Analytics,	
	Summarizing the QoE Measurement Methods, Applications of QoE	
	Network Design Implications of QoS and QoE Classification of QoE/ QoS	
	Mapping Models, BlackBox Media-Based QoS/QoE Mapping Models,	
	Glass-Box Parameter-Based QoS/QoE Mapping Models, Gray-Box	
	QoS/QoE Mapping Models, Tips for QoS/QoE Mapping Model Selection,	
	IP-Oriented Parameter-Based QoS/QoE	
Mar	Mapping Models, Network Layer QoE/QoS Mapping Models for Video	12
	Services, Application Layer QoE/QoS Mapping Models for Video Services	
	Actionable QoE over IP-Based	
	Networks, The System-Oriented Actionable QoE Solution, The Service-	
	Oriented Actionable QoE Solution, QoE Versus QoS Service Monitoring,	
	QoS Monitoring Solutions, QoE Monitoring Solutions, QoE-Based	
	Network and Service Management, QoE-Based Management of VoIP	
	Calls, QoE-Based Host-Centric Vertical Handover, QoE-Based	
	NetworkCentric Vertical Handover.	
	Unit V	
	Modern Network Architecture: Clouds and Fog, Cloud Computing,	
	Basic Concepts, Cloud Services, Software as a Service, Platform as a	
	Service, Infrastructure as a Service, Other Cloud Services, XaaS, Cloud	
	Deployment Models, Public Cloud Private Cloud Community Cloud,	
	Hybrid Cloud, Cloud Architecture, NIST Cloud Computing Reference	
	Architecture, ITU-T Cloud Computing Reference Architecture, SDN and	
	NFV, Service Provider Perspective Private Cloud Perspective, ITU-T	
	Cloud Computing Functional Reference Architecture, The Internet of	
	Things: Components The IoT Era Begins, The Scope of the Internet of	
	Things Components of IoT-Enabled Things, Sensors, Actuators,	
	Microcontrollers, Transceivers, RFID, The Internet of Things:	
	Architecture and Implementation, IoT Architecture, ITU-T IoT Reference	
	Model, IoT World Forum Reference Model, IoT Implementation,	
	IoTivity, Cisco IoT System, ioBridge, Security Security Requirements,	
	SDN Security Threats to SDN, Software-Defined Security, NFV	
	Security, Attack Surfaces, ETSI Security Perspective, Security	
	Techniques, Cloud Security, Security Issues and Concerns, Cloud	
	Security Risks and Countermeasures, Data Protection in the Cloud,	
	Cloud Securityas a Service, Addressing Cloud Computer Security	
	Concerns, IoT Security, The Patching Vulnerability, IoT Security and	
	Privacy Requirements Defined by ITU-TAn IoT Security	
	Framework, Conclusion	

Sign of Faculty

M.L. Dahanukar College of Commerce (Autonomous)

Teaching Plan: 2024 - 25

Department: I.T. Class: M.Sc.(I.T.) Semester: II

Subject: Microservice Architecture

Name of the Faculty: Dr. Prajakta Joshi

Month	Topics to be Covered	Internal Assessment	Number of Lectures
December	Microservices: Understanding Microservices, Adopting Microservices, The Microservices Way.		06
Janauary	Unit 2 Service Design: Microservice Boundaries, API design for Microservices, Data and Microservices, Distributed Transactions and Sagas, Asynchronous Message-Passing and Microservices, dealing with Dependencies,		12
February	System Design and Operations: IndependentDeployability, More Servers, Docker andMicroservices, Role of Service Discovery, Need for anAPI Gateway, Monitoring and Alerting. AdoptingMicroservices in Practice: Solution ArchitectureGuidance, Organizational Guidance, CultureGuidance, Tools and Process Guidance, ServicesGuidance.		12

Sign of Faculty

M.L. Dahanukar College of Commerce (Autonomous)

Teaching Plan: 2024 - 25

Department: <u>I.T.</u> Class: <u>MSc.(I.T.) Part-I</u> Semester: <u>II</u>

Subject: <u>Computer Vision</u>

Name of the Faculty: Ms. Rasika Sawant

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
December	Unit 1:		08
	Perform Geometric transformations		
	Perform Image Stitching		
	Perform Camera Calibration		
January	Unit 2:		18
-	Perform the following:		
	a. Face detection		
	b. Object detection		
	c. Pedestrian detection		
	d. Face recognition		
	Construct 3D model from images		
	Implement object detection and tracking from		
	video		
February	Unit 3:		16
	Perform Feature extraction using RANSAC		
	Perform Colorization		
March	Unit 4:		18
	Perform Text detection and recognition		
L	Perform Image matting and Composting		

Sign of Faculty